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INTRODUCTION

Wt. siitgest that, iezneral systems theory iH; the '.,,:tr.,i study of

fo rmad models. To us this point seems both (,bv ,us and neglecte.d. It

is obvious in the strnse that general systems theo'ry scek.; to coMIprehend

similarities and dift'erences among abstract systems. It is neglected in

the sense that study of classes of models has not seen the systematic

em~hasis that would appear necessary to provide the prrspect of a data

base complete enough to give theoretical work broad scope.

In this paper we explicitly consider a class of" systems defined

constructively, that is, not on the basis of the systems' behavior, but

in terms of properties of the parts constituting the systems, and the

structures which mediate their interactions. After defining the class,

we focus attention on a particular behavioral characteristic of the

systems, namely the length of the steady-state or cycle length. For

the given class of systems we then seek to provide the general systems

theorist with a degree of insight into 1) the distributional form of

the cycle length considered as a random variable under random structural

and initial-state variation, and 2) the effect of system size directly

on (average) cycle length and on other parameters of these distributional

models.

THE SYSTE4S EXAMINED

The particular class of systems we consider is the set of all

systems which are individually fixed in structure and built up from

functionally identical elements having two inputs and two internal

states. Additionally we assume our systems are not influenced by the

environment. The elements' next internal state is a determinate



function of both the internal states and the in 1 .ut valuv3 ,-xisting at

each element at the present instant of idealized -ystem time. The

elements' outputs carry the various elements' internal states. In

summary, our systems describe a subset of binary, autonomous, fixed

structure, deterministic, automata.

We have already outlined our reason for choosing a class of systems

for study--our conviction in the appropriateness of this approach for

the development of general systems theory. We will now try to justify

the particular choice made. In that connection it is interesting that

while our biases toward study of relatively narrow classes of systems

stem from our perception of the field of general systems theory, these

biases are consistent with the reseerch emphases of some late automata

theoretic writing [4,5].

In studying the defined class of systems we are in effect

recommending this class to the general systems theorist as a worthy

object of attention. There are, as we have mentioned, reasons related

to research strategy for this, but there exist substantive reasons as

well. Among fixed-structure models built of functionally heterogeneous

elements with the same number of inputs per element (K), Kauffman [31

argues that biological applicability is maximized for K = 2 . The

criteria used by him for biological relevance, namely, relatively

localized steady-state behavior, resistance of steady-state behavior to

disturbance, and restricted possibilities of change among the different

steady-states available have wider significance. The first criterion

can be considered a demand that a system's steady-state at the very

least be empirically recognizable. The second criterion requires the
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system to be behaviorally robust. The third criterion requires the

system to have constrained developmental opportunities. The second

and third criteria are clearly desirable in models of many biological

systems, and can be seen to apply in other areas as well. The important

first criterion appears close to a necessary condition in models for

any real-world system to which the term steady-state behavior has

empirical significance. Of course there are qualifications; it is not

asserted that a model of any real world phenomenon must be a network

of heterogeneous elements with two inputs. Rather we take Kauffman's

analysis as demonstrating the theoretically pivotal nature of the class

of network models for which K = 2

Our own class of model systems differs from Kauffman's in having

functionally homogeneous elements (all elements in any one system are

identical) with two internal states rather than one. This class can

be finally justified by pointing to the value for theoretical develop-

ment of determining the behavior of simple, functionally "pure" systems,

leaving the study of the behavior of mixtures of elements (as in

Kauffman's systems) as a natural next step. We should also point out

that elements with one internal state are included in our class.

The functional description of an element can be expressed in general

in the following form gtven in Figure 1, where entries a,b,...,h are

the next internal state, and next output state of the element. They

take on values 0 or 1 in any specific table. We will refer to a

specific table by interpreting the entries abcd and efgh as tWo

binary integers in the notation T(abcd,efgh). A system using the table

T(1001,0110) would be referred to as a T(9,6) system. The defining

table will also be called a transformation.
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FIGURE 1: Matrix Form of a Transformation

Present Internal State

0 1

0 0 a c

0 1 b f
Present Input States

1 0 c g

1 1 d h

8
There are 2 = 256 different transformations. Therefore, there

are 256 functional types of systems in our class. Where attention is

restricted to length of behavior (steady-state or transient) these 256

types reduce to the 88 behavioral equivalence classes [6,7] for which

data are taken in this paper.

A specific system is formed by taking N elements which realize

the same transformation T and Joining them so that all elements'

inputs are connected to outputs. While the behavior of that specific

system is observed, no changes are made in the structure (the pattern

of connections) or its function (T). We follow convention in referring

to the set of internal states of the elements of a given system as the

system state. It is clear that there are exactly 2N distinct system

states. It is also clear that if the system is started at an arbitrary

system state, it will step through a (possibly void) set of transient

states before reaching its steady-state, a set of states through which

it will continuously cycle. The number of states in this cycle is the

cycle length V , 1 < V < 2 By system size we mean the value of N
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PROCEDURE

As proposed in the introduction, we will now develop a model for

the distribution of cycle lengths. In the process we will garner con-

siderable insight into how system size affects cycle length. First of

all, a clarification with respect to the notion of a distribution of

cycle lengths is in order. For a given system size N , a given trans-

formation T , a fixed system starting state R , and a fixed set of

system connections C , the cycle length V is then specified in a

completely deterministic manner, as described in the previous section,

i.e., V = G(R,C,N,T) . However at a fixed N , the number of possi-

bilities for choosing R is 2N and the number of possibilities for

choosing C is N2 N  so that the process of investigating the function

G for each of 88 choices of T with varying choices of N is

computationally infeasible. Hence to make this examination tractable

we resort to an artifice; R and C are selected at random, i.e., such

that each possible starting vector R is equally likely and has a 1 /2N

chance of selection and each choice of connections C is equally likely

with 1I/N 2N chance of selection. Since R and C are random, V will

now be random as well and a distribution of V exists in that sense.

For N = 2 the exact distribution of V can be readily obtained given

T . This case will be considered shortly. The problem of calculating

the exact distribution of V for N = 3 or 4 is immense, and for

larger N is intractable. Moreover, we do not intend to attempt a

transformation of variables to obtain V's distribution since the func-

tion G at a fixed N and T appears hopeless to describe. Nor is it

clear for our purposes that we necessarily want the exact distribution



of V at each N and T . Rather, since V's distribution now

depends only on the parameters N and T , we would prefer to describe

a family of density functions f V(v;N,T) which seem to effectively

describe V's behavior and which over varying T's allow us to examine

the dependence of V's distribution on N .

Before we delve more deeply into this question we pause to briefly

consider the case for N = 2 . In this case there are 4 possible

starting configurations and 16 possible connection sets, so that there

are but 64 possible R and C choices, each with likelihood 1/64 of

being selected. The sample space for V is {1,2,3,4) . As an example,

the transformation T(9,6) was examined and yielded P(V-1) = 7/8 ,

P(V=2) = 1/8 , P(V=3) = P(V=4) o o

The remaining 87 distinct transformations could similarly be

examined, but there seems to be little gain in this. Instead we turn to

the more interesting situation with general N . Employing the notions

of randomness described above and using the computer, we obtained 100

observations from each of the cycle length distributions given by the 88

distinct transformations taken with system sizes N = 4,5,...,17 , i.e.,

we examined 100 observations from each of 8 x14 = 1232 distributions.

While 100 observations is hardly enough to develop a highly accurate

picture of each of these distributions, it is enough to reveal their

general behavior, particularly with regard to varying N , which, as we

mentioned above, is a primary concern. A preliminary examination of our

results indicates that the 88 transformations can be more or less

classified into two major groups; those which are essentially degenerate

over N and those which exhibit changing, often rather volatile, behavior
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over N The former group is largely made up of transformations which

exhibit almost trivial behavior in the sense of yielding cycle lengths

which are virtually always one, virtually always two, or a relatively

stable proportion of one's and two's regardless of N . The latter group

contained transformations which clearly seemed to be varying (increasing)

in N and as N grew larger occasionally resulted in cycle lengths of

14
the order of 10 . We note that at a given N the maximum cycle length*

is 2N  and is of order 10 for N > 14 . Moreover, for these more

volatile transformations several cycles lengths on the order of the maxi-

mum were observed even though our samples were only size 100 , indi-

cating that these lengths are not rarities but rather occurrences which

may be expected with some degree of regularity. Additionally for these

more interesting transformations, the maximums of the samples seemed to

be increasing exponentially in N analogously to the maximum cycle length.

These observations, coupled with an effort to achieve a more manageable

range for the data, led to a decision to make a logarithmic transformation

on the observations. The base of the log transformation is, of course,

not important since it provides nothing more than a scaling of the observa-

tions. For convenience, base ten was employed. Henceforth in all discus-

sion of cycle length we will implicitly refer to log cycle length.

Although the sample spaces of the observations are clearly discrete, as

a result of the log transformation and in the interest of mathematical

convenience we attempted to fit a continuous family of distributions to

the data. Noting that the distributions are bounded, and as they appeared

*The maximum cycle length actually depends on T as well and can never

exceed 2N - 2, N > 2, for any T.

T
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to be more or less unimodal, we were naturally lei to the Pearson Type

II or generalized Beta family of distributions. Although these distri-

butions are ordinarily parametrized by four parameters, as a result of

our data transformation it is clear that the lower limit of the sample

space ought to be taken as zero. Thus we examined the family of three

parameter distributions whose probability density function is given by

r(a+) v a-1 ('Y-v) -I

fv(v) = rwrC ItrC+) 0<V <Y

with a>O, 8>0, y>O .

The first three moments of this distribution are

a

a(a~l)y 2
U2 =(a+B)a+8 l)

P a~.c+lJ (a+2)Y 3
'3 = (a+O)C8+l)Ca+a+2)

and

E(V) = U1 , var(V) =

(+8)2 (a+a+l)

If ml,m 2 ,m3 are the first three sample moments, then we can obtain

three equations in three unknowns to solve for sample estimators of

a, 8, Y . The equations are gotten by replacing vi by m1 , i 1,2,3

above. The solutions are

8
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mi (miY-m 2

2^

(I2-m1 )

where

Mm2
2 -m3 ml) +m (m2 -m 1 )

Y 2 
2

Varying a , 8 and Y varies the skew and range of these distri-

butions. The pictures in Figure 2 describe the sorts of behavior possible

for the density function, fv(v) . Increasing y , of course, primarily

expands the measurement scale although all the moments of the distribution

are increased. Changing a and 8 varies the shape of distribution.

For a fixed y increasing a (8) relative to a (a) increases (decreases)

the mean. By examining the variance expression it is apparent that if

either a or 8 or both grow large the variance or spread will be

decreased; but also if either a or 8 or both are made very small the

variance (spread) will be decreased. Thus for a fixed y making a (8)

large relative to 8 (a) increases the area to the right (left) of the

scale and making a (8) small relative to 8 (a) increases the area to

the left (right) of the scale. As a result a distribution for which a

is very small relative to 8 will be essentially degenerate at 0 (an

extreme case of 1(a), l(c) or l(e) in Figure 2). Similarly a distribu-

tion for which a is very large relative to 8 will be essentially

degenerate at y (an extreme case of l(b), l(d) or l(f) in Figure 2).

A distribution such that o and 8 are quite large but of the same

9
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order of' aignitude will be essentially degene rate at, /r+6 . Further

discussinn of t.,e properties of these ,cuarves is availlabe in the refer-

ence texts [1,2].

HESULTS

Let us turn to an examination of our cycle length distributions in

terms of the above fumily of distributions. Thotse distributions which

t.eia to be -icive (i.. nondegenerate) were us,.aAly fit by a curve of

the form 1(c) or l(e) (occasionally I(f)) from Figure 1. The essentially

degenerate distributions were usually fit by extreme cases of 1(a) or

1(c) (where the cycli length was almost always i so that the log cycle

length was almost always 0 ) or by extreme cases of l(e) or l(f), i.e.,

with ai , 6 large so that the variance is small (where, for example,

the cycle length was almost always 2 so that the log cycle length was

almost always .3010 ). There are several distributions which do not

seem to be at all well described by the model. The poor fit may be

explained by one or more of the following reasons.

(i) We are fitting a family of continuous (listributions to

observations which are clearly from a discrete scale.

(ii) We have only n = 100 observations for each empirical

distribution--hardly enough to insure that our empirical

picture is close to the true underlying distributional

picture.

(iii) For some transformations, our proposed distributional

family may be inappropriate. For these transformations

the true distribution may be too "discrete" (i.e., the
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possible log cycle lengths may not be dense enough

within the range) or may not be unimodal (i.e., the

generalized Beta family defines only unimodal distri-

butions).

Nonetheless for most of the transformations the results were rather

gratifying and indicate at least to some extent the appropriateness of

our model. In fact 70 of the 88 transformations taken over N

seemed to be well fit. Only 18 were badly described and these 18

might be fit better with larger sample sizes. Table 1 considers the

behavior of several of the transformations at various N's to illustrate

the above discussion.

We now return to the more pertinent question regarding the relation-

ship between system size and cycle length (equivalently log cycle length).

We first note that the question of goodness of fit of the distributional

models is separate from that of the behavior of cycle length with

increasing sample size. To further clarify this point there are four

possible situations as in Figure 3.

FIGURE 3: A Classification of Transformations

Cycle Length Behavior is Cycle Length Behavior
Strongly Related to N is Unrelated to N

Model Fits
Transformation I II
Over N

Model Does Not
Fit Transforma- III IV
tion Over N
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We expect that fc r most transformations increasing N wil) in

some sense increase cycle length. But it is also apparent that there

will exist transformations which will produce cycle lengths which will

be independent of N . That is, certain transformations by their defi-

nition will result in short cycle lengths regardless of system size.

As a result there will be transformations in each of the four cate-

gories. Of course the column classification is not perfectly dichotomous.

While most of the 88 transformations could be comfortably classified

in one of the two categories, there were perhaps nine transformations

which required more data to conclude exactly where to place them. Not

surprisingly, most of these arose in situations where the model did not

fit the transformation well. Table 2 summarizes the categorization of

the transformations, including plausible placements for the above nine.

If we wish to focus directly on the dependence of cycle length on

system size, it would make sense to examine and correlate with system

size certain characteristics of our samples such as the sample mean,

sample median, sample standard deviation and sample maximum. Although

the data are not continuous, a product moment correlation is likely to

be as effective as any other measure of association in this case. A

large positive correlation value will support the contention of strong

dependence of cycle length on system size while a correlation value near

zero (positive or negative) will indicate relative independence of cycle

length and system size. We would not expect large negative correlations.

More specifically, if for a particular transformation cycle length

is truly dependent upon system size then, in terms of the artificial

randomness we have created, the distribution mean ought to be strongly

14
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correlated with N . This should be true ol" 'he listribution median as

well, although perhaps not quite so strongly since for discrete distri-

butions it may turn out that the median Is monotonically increasing in

N but not strictly. Further, if cycle lengths are affected by N we

* might reasonably expect the upper bound on the sample space of the

distribution (which, of course, is not necessarily the maximum possible

cycle length at a given N) to be strongly correlated with N . Finally,

the distribution variance need not necessarily be strongly correlated

with N . Even though increasing N leads to observing increasingly

larger cycle length measurements, the distributional spread as charac-

terized by variance may or may not be increasing. Additionally, since

the variation is artificially induced (by our arbitrary choice of an

equiprobable sampling regime) it is questionable as to how much interpre-

tation may be attached to it. Hence the pertinence of this final corre-

lation measurement to the question of the dependence of cycle length on

N is not assured. However, if the population variance is strongly

correlated with N , of necessity the space of observations must be

increasing in N so there will be some evidence of dependence. As a

result, the sample estimates of all of these distributional character-

istics ought to reflect these expectations as well.

Suppose in addition we are in Situation I and wish to examine the

effect of increased system size on the parameters of distributional model.

As we have discussed, the upper bound on the log cycle length space ought

to be increasing and in fact the mass of the distribution ought to be

moving to the right as well. This should be reflected in a parametric

dependence on N In light of discussion in the previous section, an

.... .... .. ... .



increase in y will achieve both these effects but additionally an

increase in a will also adjust the skew oQ the distribution. We would

not expect to increase much if at all. As a result we would expect

y to be most strongly correlated with N , a next and then .

This was almost universally borne out by the data. In Situations II and

IV we would expect little correlation of N with any of our sample

characteristics or parameter estimates. Again this was usually true,

although for an occasional transformation a surprisingly large correla-

tion value with C or 8 was obtained. After more careful examination

it became apparent that these values were obtained upau correlating N

with estimates on the order of 10-6 or smaller. These estimates,

although perhaps slowly increasing in N , are still so small that the

cycle length distribution remains essentially degenerate over N and

hence is still essentially independent of N . In Situation III we expect

the parameter estimates to be weakly correlated with N while the sample

characteristics ought to be strongly correlated with N . Table 3

examines typical transformations in each of the above situations and

supports the preceding discussion.

Hence it is possible to conclude that for certain transformations

there is highly convincing evidence that cycle length is directly related

to system size. For others there is convincing evidence that essentially

no relationship exists and for very few is the evidence inconclusive.

Roughly 2/3 of the transformations are in the first case, approximately

1/4 in the second and the remaining 1/12 in the last case. Again

perhaps additional data vould allow us to resolve the ambiguities in the

last case.

17
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